A variety of polyfunctionally substituted condensed pyridines and pyrazolotetrahydroquinazolines have been synthesized utilizing cyclic enaminones as starting materials.
J. Heterocyclic Chem., 40, 689(2003).

In conjunction to our previous interest in utilizing enaminones as building blocks for synthesis of polyfunctionally substituted heteroaromatics as potential agrochemicals or intermediates in dye and pharmaceutical industries [1-6], we report here our further results in this area. Thus enaminones 2a,b were synthesized via condensation of 1a,b with dimethylformamide dimethylacetal (DMFDMA) in refluxing xylene utilizing modified literature procedure [7]. The enaminones $\mathbf{3 , 4}$ were prepared following literature procedures [1,5,6] (Scheme1).

Scheme 1

The enaminones $\mathbf{2 a}, \mathbf{b}$ reacted with malononitrile in refluxing acetic acid and in presence of ammonium acetate to yield products of condensation via dimethylamine elimination. These may thus be formulated as $\mathbf{6 - 1 0}$. Thus, initial Michael addition at the activated double bond can afford 6 that would then cyclise into 7 or isomerise into 8 . Alternatively, condensation of the carbonyl group in 2a,b to the active methylene moiety would afford 9 that can then cyclise into $\mathbf{1 0}$ (Scheme 2). The acyclic compound $\mathbf{6}$ could be ruled out based on the ${ }^{13} \mathrm{C}$ NMR spectra that revealed the presence of only three sp^{3} carbons at $\delta=50.6$ and 33.32 ppm for the two CH_{2} and at $\delta=28.44 \mathrm{ppm}$ for the two equivalent CH_{3} groups. Structure $\mathbf{8}$ is established
for this reaction product as the HMBC spectra revealed correlation between the cyano function at $\delta=116.47$ and the singlet pyridyl-H in position 4 at $\delta=8.33 \mathrm{ppm}$. The alternative structure $\mathbf{1 0}$ which could have resulted via initial condensation at the carbonyl function should display a correlation between the pyridyl-CH and the carbonyl function in position 7, which is not observed. Structure 7 was ruled out based on the stability of the reaction product on reflux in ethanol/hydrochloric acid solution, a condition that would lead to hydrolysis of the imine moiety in 7 or rearrangement into 8 .

Similarly, reacting 2a,b with cyanothioacetamide afforded 11a,b in good yield. Structures 11a,b were established for these reaction products based on analogy to the well established behavior of 2a,b towards malononitrile. Compounds 11a,b thus reacted with phenacyl bromide to yield the thienoquinolines $\mathbf{1 3 a}, \mathbf{b}$ probably formed via intermediacy of 12a,b that could not be isolated. Ready

Scheme 2

formation of condensed thiophenes from reaction of 2-thioxopyridine-3-carbonitrile is a well-established route to pyridothiophenes that has been recently utilized by us for synthesis of benzotriazolylthienopyridines [8] (Scheme3).

Scheme 3

Although enaminones $\mathbf{4 a}, \mathbf{b}$ have been recently reported to react smoothly with ethyl acetoacetate and acetylacetone in refluxing acetic acid and in presence of ammonium acetate $[9,10]$, we failed to condense $\mathbf{2 a}, \mathbf{b}$ in similar manner with these reagents. However, enaminone 3 reacted smoothly with both reagents to yield products that were formulated as the pyridines $\mathbf{1 4 a , b}$ and not isomeric $\mathbf{1 5 a}, \mathbf{b}$ based on ${ }^{1} \mathrm{H}$ NMR. Thus, ${ }^{1} \mathrm{H}$ NMR spectra of 14 a indi-
cated pyridyl H-5 and H-4 as two doublets at $\delta=7.68$ ppm and 7.97 ppm with $J=8.2 \mathrm{~Hz}$. If these were for $\mathrm{H}-3$ and H-2 in 15, one would expect J of $4-6 \mathrm{~Hz}$ [12].

Reacting 3 with acetylacetone afforded 14b based on observations similar to those discussed above. The reaction of $\mathbf{3}$ with cyanothioacetamide has afforded the pyridinthione $\mathbf{1 6}$ by similar sequence.

The reaction of heterocyclic amines with $\mathbf{4 a}, \mathbf{b}$ has been recently utilized by us for synthesis of azolopyrimidines [11-14]. Now we have found that $\mathbf{2 a}, \mathbf{b}$ also react with 3-amino-1H-pyrazole 17 to yield a pyrazolo[1,5-a]quinazoline derivatives that may be formulated as 18-20. Structures 20a,b were established by synthesizing them via the reaction of 21 with $\mathbf{1 a}, \mathbf{b}$. In contrast to the behavior of $\mathbf{2 a}$, compound $\mathbf{2 b}$ reacted with $\mathbf{1 7}$ to yield the enaminone $\mathbf{1 9}$ that cyclized further into $\mathbf{2 0}$ in refluxing DMF (Scheme 4).
Compounds 2a,b reacted with 3-aminocoumarine 22 to yield equilibrium mixture of enaminones 23a,b and 24a,b. Similar reaction of $\mathbf{4 a}, \mathbf{b}$ with 22 gave a mixture of the Z-and E - enaminones 25a,b and 26a,b in relative ratio $85: 15$ for $\mathbf{4 a}$ and $80: 20$ for $\mathbf{4 b}$. The predominance of Z form for these products reflects the effect of hydrogen bonding in stabilizing this structure (Scheme 5). Trials to effect cyclisation of 23-26 into pyridine derivatives under diversity of cyclisation reaction conditions failed.
The coupling reaction of $\mathbf{4 a}, \mathbf{b}$ with aromatic and heteroaromatic diazonium salts has been extensively utilized in recent years for synthesis of arylhydrazonopropanals that proved to be excellent starting materials for synthesis of polyfunctionally substituted pyridazines [6,15-17]. In this work, trials to couple $\mathbf{3}$ with benzenediazonium chloride failed. However, p-nitrobenzene diazonium chloride

Scheme 4

Scheme 5

coupled readily with 3 to yield arylhydrazonopropanals that proved to exist as an equilibrium mixture of $\mathbf{2 7}$ and 28. Thus, ${ }^{1} \mathrm{H}$ NMR showed two formyl signals at $\delta=9.52$ and 10.01 ppm of relative intensity $2: 1$. Also, two NH signals at $\delta=12.93$ and 14.01 ppm of the same relative intensities appeared. The downfield shift of formyl proton in the antiform is a result of hydrogen bonding with the hydrazone NH as indicated in structure 28. Thus the ${ }^{1} \mathrm{H}$ NMR spectra revealed signals at $\delta=7.45-7.48(\mathrm{~m}, 2 \mathrm{H}$, coumarinyl-H), 7.66-7.67 (m, 2H, coumarinyl-H), 7.81 (d, 2H, $J=6.7 \mathrm{~Hz}$, p-nitrophenyl-H), 8.01 (d, $2 \mathrm{H}, J=9.2 \mathrm{~Hz}$, p-nitrophenyl$\mathrm{H}) ; 8.52(\mathrm{~s}, 1 \mathrm{H}$, coumarinyl H-4), 10.01 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$),

Scheme 6

14.00 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$) for the anti-form 28 whereas signals at $\delta=7.55-7.60(\mathrm{~m}, 2 \mathrm{H}$, coumarinyl-H), 7.67-7.80 (m, 2 H , coumarinyl-H); $8.24(\mathrm{~d}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}, p$-nitro-phenyl-H), 8.32 (d, 2H, $J=9.2 \mathrm{~Hz}, p$-nitrophenyl-H), 8.64 ($\mathrm{s}, 1 \mathrm{H}$, coumarinyl H-4), 9.52 (s, $1 \mathrm{H}, \mathrm{CHO}$), 12.92 (br s, $1 \mathrm{H}, \mathrm{NH})$ revealed the syn-form 27.

The enaminone 5 also coupled with benzene diazonium chloride to yield $\mathbf{2 9} .{ }^{1} \mathrm{H}$ NMR of this reaction product indicates that it exists solely in the iminohydrazone form.

The enaminones 2a,b failed to couple with aromatic diazonium salts however, compound 2b coupled readily with diazotised heterocyclic amine $\mathbf{3 0}$ yielding a biscoupling product of molecular formula $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{8}(\mathrm{MW}=292)$. This was formulated as $\mathbf{3 3}$ and is assumed to be formed via initial Japp Klingman type cleavage of the dimethylaminomethylene moiety in $\mathbf{2 b}$ yielding 31 that cyclised into 32 and then coupled further with 30 to yield a hydrazone that cyclises into the final isolable product 33 . This same product was isolated on coupling 5 with 30 (Scheme 6).

EXPERIMENTAL

[^0]Analytical measurements were performed in Analab in Kuwait University, and Analytical data unit at Cairo University.

General Procedure for the Preparation of Compounds 2a,b and 3.
A suspension of each of cyclohexane-1,3-dione 1a, 5,5-dimethylcyclohexane-1,3-dione $\mathbf{1 b}(10 \mathrm{mmol})$ and 3-acetylbenzo[b]pyran-2-one (10 mmol) was treated with N, N-dimethylformamide dimethylacetal $(1.46 \mathrm{~g}, 11 \mathrm{mmol})$ in xylene (20 ml). The reaction mixture was heated under reflux for 3 to 5 h . The solid product obtained upon cooling was recrystallized from the proper solvent.

2-Dimethylaminomethylenecyclohexan-1,3-dione (2a).

Compound 2a was obtained as brown crystals in 60% yield $(1.0 \mathrm{~g})$ from $\left(\mathrm{CHCl}_{3} /\right.$ pet.ether $)$; mp: 116°, Lit. mp. $114^{\circ}[7]$; ir $(\mathrm{KBr}) \mathrm{v}_{\text {max }}=1656 \mathrm{~cm}^{-1}(\mathrm{CO}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{EV}): m / z=167$ $\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \operatorname{nmr}(\mathrm{DMSO}): \delta=1.77-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29(\mathrm{t}, 4 \mathrm{H}$, $\left.J=6.4 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 3.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 7.99 (s, 1H, CH).

2-Dimethylaminomethylene-5,5-dimethylcyclohexan-1,3-dione $\mathbf{2 b}$.
Compound 2b was obtained as yellow crystals in 70% yield $(1.36 \mathrm{~g})$ from $\left(\mathrm{CHCl}_{3}\right.$ / pet.ether) mp :
94°, Lit. mp 94° [7]. ir (KBr) $v_{\text {max }}=1663 \mathrm{~cm}^{-1}$ (CO); MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=195\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}) ~ \delta=0.96(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{CH}_{3}$), 2.21 ($\mathrm{s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}$), $3.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.38(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), 7.95 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$).
3-(3-Dimethylaminopropenoylcoumarine) (3).
Compound $\mathbf{3}$ was obtained as yellow crystals in 60% yield (1.45 g) from ethanol; mp: 160°; ir (KBr) $v_{\text {max }}=1717$ and $1680 \mathrm{~cm}^{-1}$ (CO). MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=243\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta=$ $2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.31(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}$, vinyl 2-H), 7.28-7.37 (m, 2H, arom. H), 7.56-7.65 (m, 2H, arom. H), $7.94(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}$, vinyl 3-H), $8.61(\mathrm{~s}, 1 \mathrm{H}$, pyran $4-\mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$ (243.25): C, 69.12; H, 5.39; N, 5.76. Found C, 69.33; H, 5.39; N, 5.69.

3-amino-5,5-dimethylcyclohex-2-enone (5).
A mixture of 5,5-dimethylcyclohexane-1,3-dione $\mathbf{1 b}$ ($1.4 \mathrm{~g}, 10$ $\mathrm{mmol})$, ammonium acetate $(0.77 \mathrm{~g}, 10 \mathrm{mmol})$, acetic acid (0.6 $\mathrm{ml}, 10 \mathrm{mmol}$) was refluxed in toluene (20 ml) using Dean Stark apparatus for 5 to 6 h . The solvent was evaporated in vacuum, and the residual solid was crystallized from acetonitrile. Compound 5 was obtained as yellow crystals in 65% yield (0.9 $\mathrm{g}) ; \mathrm{mp}: 167^{\circ}$; ir $(\mathrm{KBr}) v_{\text {max }}=2953$ and $2890\left(\mathrm{NH}_{2}\right), 1684 \mathrm{~cm}^{-1}$ (CO). MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=139\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta=$ $0.96\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.91(\mathrm{~s}$, 1 H , olefenic-H), 6.84 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$).

Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}$ (139.19): C, 69.03; H, 9.41; N, 10.06. Found C, 69.29; H, 9.24; N, 10.21 .

General Procedure for the Preparation of Compound 8a,b.
A suspension of 2a,b ($1.67 \mathrm{~g}, 10 \mathrm{mmol}$), malononitrile (0.66 g , $10 \mathrm{mmol})$ and ammonium acetate ($0.77 \mathrm{~g}, 10 \mathrm{mmol}$) was refluxed in acetonitrile (10 ml) for 2 h . The solvent was reduced to deposit a solid that was crystallized from acetonitrile.
2,5-Dioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (8a).
Compound 8a was obtained as brown crystals in 70 \% yield $(1.31 \mathrm{~g})$; mp: 305°; ir (KBr) $v_{\text {max }}=2952(\mathrm{NH}), 2230(\mathrm{CN})$, 1686 and $1656 \mathrm{~cm}^{-1}(\mathrm{CO})$. MS (EI, 70 EV): m/z $=188\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H}$
nmr (DMSO): $\delta=1.98-2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46(\mathrm{t}, 2 \mathrm{H}, J=6.4$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 2.86\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 13.01$ (br s, 1H, NH).

Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$ (188.18): C, $63.82 ; \mathrm{H}, 4.29 ; \mathrm{N}$, 14.89. Found C, 63.95; H, 4.37; N, 14.90 .

7,7-Dimethyl-2,5-dioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (8b).

Compound $\mathbf{8 b}$ was obtained as white crystals in 75% yield $(1.62 \mathrm{~g})$; mp: 327°; ir (KBr) $\nu_{\max }=2953(\mathrm{NH}), 2230(\mathrm{CN})$, $1668 \mathrm{~cm}^{-1}$ (CO). MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=216\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta=1.03\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.80(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 8.33 (s, $1 \mathrm{H}, \mathrm{H}-4$), 12.95 (br s, $1 \mathrm{H}, \mathrm{NH}$).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ (216.23): C, $66.65 ; \mathrm{H}, 5.59 ; \mathrm{N}$, 12.96. Found C, $66.48 ; \mathrm{H}, 5.55 ; \mathrm{N}, 13.09$.

General Procedure for the Preparation of Compounds 11a,b.
A mixture of each of compound $\mathbf{2 a}, \mathbf{b}(1.67 \mathrm{~g}, 10 \mathrm{mmol})$ and cyanothioacetamide ($1 \mathrm{~g}, 10 \mathrm{mmol}$) in ethanol 20 ml in the presence of few drops of triethylamine, was refluxed for 20 min . The solution was poured onto water containing drops of concentrated hydrochloric acid to deposit a solid that was collected by filtration and crystallized from proper solvent.

5-Oxo-2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (11a).

Compound 11a was obtained in 57% yield (1.16 g) from ethanol/DMF; $\mathrm{mp}>350^{\circ}$; ir (KBr) $\mathrm{v}_{\text {max }}=2955(\mathrm{NH}), 2229$ (CN), $1663 \mathrm{~cm}^{-1}$ (CO). MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=204\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H}$ nmr (DMSO): $\delta=2.01-2.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.52(\mathrm{t}, 2 \mathrm{H}, J=6.4$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 2.95\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 8.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 14.36$ (br s, 1H, NH).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}$ (204.18): C, 58.82 ; $\mathrm{H}, 3.95$; N , 13.72, S 15.68. Found C, 58.51; H, 3.67; N, 13.30; S, 15.34.

7,7-Dimethyl-5-oxo-2-thioxo-1,2,5,6,7,8-hexahydroquinoline-3carbonitrile (11b).

Compound 11b was obtained in 83% yield (1.92 g) from ethanol/dioxane; $\mathrm{mp}>350^{\circ}$; ir (KBr) $\mathrm{v}_{\text {max }}=3007(\mathrm{NH})$, $2229(\mathrm{CN}), 1670 \mathrm{~cm}^{-1}(\mathrm{CO})$. MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=232\left[\mathrm{M}^{+}\right]$. ${ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}): ~ \delta=1.03\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.91 (s, 2H, CH2), 8.24 (s, 1H, H-4), 14.41 (br s, $1 \mathrm{H}, \mathrm{NH}$).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$ (232.23): C, 62.06; H, 5.21 ; N , 12.06, S 13.79. Found C, 61.92; H, 5.07; N, 11.83; S, 13.00.

General Procedure for the Preparation of Compounds 13a,b.
A mixture of each of compound $\mathbf{1 1 a , b}(10 \mathrm{mmol})$ was refluxed with bromoacetophenone (1.99 g .10 mmol) in DMF (10 ml) for 30 min . The solid formed was collected by filtration and crystallized from ethanol.
3-Amino-2-benzoyl-7,8-dihydro-6H-thieno[2,3-b]quinolin-5one (13a).

Compound 13a was obtained in 59% yield (1.89 g) from chloroform; $\mathrm{mp}=266^{\circ}$; ir: 1685 and $1646(\mathrm{CO}), 3420 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right)$. MS (EI, 70 EV): m/z $=322\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta=2.06$ (t, $\left.2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.92(\mathrm{t}, 2 \mathrm{H}, J=6.4$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 7.37-7.39(\mathrm{~m}, 1 \mathrm{H}$, arom- H$), 7.46-7.50(\mathrm{~m}, 2 \mathrm{H}$, arom$\mathrm{H}), 8.04-8.06(\mathrm{~m}, 2 \mathrm{H}$, arom -H$), 8.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2} \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 8.91 (s, 1H, H-4).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (322.31): C, $67.07 ; \mathrm{H}, 4.38$; N , 8.69, S 9.937. Found C, 66.71; H, 4.457; N, 8.98; S, 9.72.

3-Amino-2-benzoyl-7,7-dimethyl-7,8-dihydro-6 H -thieno[2,3-b]-quinolin-5-one (13b).

Compound 13b was obtained in 50% yield (1.75 g); mp $=$ 233°; ir: 1674 and $1646(\mathrm{CO}), 3396 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right)$. MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=350\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}): ~ \delta=1.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.62$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.52-7.59(\mathrm{~m}, 3 \mathrm{H}$, arom-H), 7.75-7.77 (m, 2 H , arom- H), $8.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2} \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 9.18 (s, 1H, H-4).
Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (350.36): C, 68.56; H, 5.18; N, 8.00; S, 9.142. Found C, 68.12; H, 5.023; N, 8.39; S, 9.51.

General Procedure for the Preparation of Compounds 14a,b and 16.

To a stirred suspension of compound $\mathbf{3}(2.43 \mathrm{~g}, 10 \mathrm{mmol})$ and ammonium acetate (1 g), acetic acid (10 ml), each of acetylacetone $(1.0 \mathrm{~g}, 10 \mathrm{mmol})$ and ethyl acetoacetate $(1.3 \mathrm{~g}, 10 \mathrm{mmol})$ was added. The reaction mixtures were heated under reflux for 30 min , and then allowed to cool to room temperature. The solid products so obtained were collected by filtration, and crystallized from ethanol / dioxane.

Ethyl 2-methyl-6-(coumarin-3-yl)nicotinic acid ester (14a).

Compound 14a was obtained in 69% yield (2.10 g); mp. 164°; ir: 1727 and $1677 \mathrm{~cm}^{-1}(\mathrm{CO})$. MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=309\left[\mathrm{M}^{+}\right]$. ${ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}) \delta=1.35\left(\mathrm{t}, 3 \mathrm{H}, J=7.08 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.81$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $4.34\left(\mathrm{q}, 2 \mathrm{H}, J=7.08 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.40-7.48$ ($\mathrm{m}, 2 \mathrm{H}$, coumarinyl-H), 7.68 (d, $1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-5$), 7.97 (d, $1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-4), 8.24-8.29(\mathrm{~m}, 2 \mathrm{H}$, coumarinyl-H), 8.94 (s, 1 H , coumarinyl $\mathrm{H}-4$).
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}$ (309.31): C, $69.89 ; \mathrm{H}, 4.89 ; \mathrm{N}$, 4.53. Found C, 69.91; H, 4.93; N, 4.34.

3-(5-Acetyl-6-methylpyridin-2-yl)coumarin (14b).

Compound 14b was obtained in 75% yield (2.10 g); mp. 207 ; ir: 1727 and $1681 \mathrm{~cm}^{-1}(\mathrm{CO})$. MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=279\left[\mathrm{M}^{+}\right]$. ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta=2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.37-7.44 (m, 2H, coumarinyl H), 7.64-7.68 (m, 1H, coumarinyl $\mathrm{H}), 7.93(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}$, coumarinyl H), $8.22(\mathrm{~d}, 1 \mathrm{H}, J=8.24$ Hz, pyridyl H-3), 8.29 (d, 1H, J = 8.25 Hz, pyridyl H-4), 8.87 (s, 1 H , coumarinyl H-4).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$ (279.28): C, $73.11 ; \mathrm{H}, 4.69 ; \mathrm{N}$, 5.02. Found C, 73.41; H, 4.70; N, 4.82.

6-(Coumarin-3-yl)-2-thioxo-1,2-dihydropyridine-3-carbonitrile (16).

To a stirred suspension of compound $\mathbf{3}(2.43 \mathrm{~g}, 10 \mathrm{mmol})$ and ammonium acetate (1 g), acetic acid (10 ml), cyanothioacetamide $(1.0 \mathrm{~g}, 10 \mathrm{mmol})$ was added. The reaction mixture was heated under reflux for 15 min , and then allowed to cool to room temperature. The solid product so obtained were collected by filtration, and crystallized from ethanol/dioxane. Compound 16 was obtained in 68% yield $(1.9 \mathrm{~g}) ; \mathrm{mp}=298^{\circ}$; ir: $3103(\mathrm{NH}), 2225$ $(\mathrm{CN}), 1704 \mathrm{~cm}^{-1}(\mathrm{CO}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{EV}): \mathrm{m} / \mathrm{z}=280\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H}$ nmr (DMSO): $\delta=7.22$ ($\mathrm{d}, 1 \mathrm{H}, J=7.70 \mathrm{~Hz}$, coumarinyl H-8), $7.47(\mathrm{t}, 1 \mathrm{H}, J=7.70 \mathrm{~Hz}$, coumarinyl H-6), $7.52(\mathrm{~d}, 1 \mathrm{H}, J=8.28$ Hz , pyridyl H-5), $7.77(\mathrm{t}, 1 \mathrm{H}, J=7.70 \mathrm{~Hz}$, coumarinyl H-7), 7.84 (d, $1 \mathrm{H}, J=8.10 \mathrm{~Hz}$, pyridyl H-4), $8.23(\mathrm{~d}, 1 \mathrm{H}, J=7.80 \mathrm{~Hz}$, coumarinyl H-5), 8.64 (s, 1H, coumarinyl H-4), 14.10 (br s, 1H, NH).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (280.23): C, 64.29; H, 2.88; N , 10.00; S, 11.44. Found C, 64.14; H, 3.07; N, 10.27; S, 11.32.

General Procedure for the Preparation of Compounds 19 and 20.
To a suspension of $\mathbf{2 a}, \mathbf{b}(1.67 \mathrm{~g}, 10 \mathrm{mmol})$ in pyridine (10 ml), 3- aminopyrazole $17(0.83 \mathrm{~g}, 10 \mathrm{mmol})$ was added and the reaction mixture was refluxed for 10 min . The solid formed was collected by filtration and crystallized in ethanol

5,5-Dimethyl-2-[(1 H -pyrazol-3-ylamino)-methylene]-cyclo-hexane-1,3-dione (19).

Compound $\mathbf{1 9}$ was obtained in 71% yield (1.65 g); mp 183°; ir: 2952 and $2869(2 \mathrm{NH}), 1668 \mathrm{~cm}^{-1}(\mathrm{CO})$. MS (EI, 70 EV): m/z $=233\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}): \delta=1.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $2.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.47(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}$, pyrazolyl H-4), $7.76(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}$, pyrazolyl H-5), $8.53(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}$, $\mathrm{CH}), 12.53(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{NH}), 12.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ (233.26): C, 61.78; H, 6.48; N, 18.02. Found C, 62.10; H, 6.67; N, 18.32.

General Procedure for the Preparation of Compounds 20a,b.

A suspension each of cyclohexane and 5,5-dimethylcyclo-hexane-1,3-dione ($1.12 \mathrm{~g}, 10 \mathrm{mmol}$), in acetic acid (10 ml) was refluxed with enaminone of 3- aminopyrazole ($1.38 \mathrm{~g}, 10 \mathrm{mmol}$) for 1.5 h . The solid formed was collected by filtration and crystallized in ethanol.

8,9-Dihydro-7H-pyrazolo[1,5-a]quinazolin-6-one (20a).

Compound 20a was obtained as yellow crystals from ethanol in 50% yield (0.93 g); mp $=182^{\circ}$; ir: $1676 \mathrm{~cm}^{-1}(\mathrm{CO})$. MS (EI, $70 \mathrm{EV}): \mathrm{m} / \mathrm{z}=187\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=2.35-2.41(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.74-2.77 (t, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}$), 3.50-3.54 (t, 2 H , $\left.J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=2.16 \mathrm{~Hz}$, pyrazolyl H-4), 8.29 (d, $1 \mathrm{H}, J=2.16 \mathrm{~Hz}$, pyrazolyl H-5), 9.03 (s, 1H, quinazolinyl H5).

Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$ (187.20): C, 64.16; H, 4.85; N, 22.45. Found C, 64.52; H, 4.85; N, 22.437.

8,8-Dimethyl-8,9-dihydro-7H-pyrazolo[1,5-a]quinazolin-6-one (20b).

Compound 20b was obtained as yellow crystals from ethanol in 50% yield $(1.07 \mathrm{~g}) ; \mathrm{mp}=142^{\circ}$; ir: $1679 \mathrm{~cm}^{-1}(\mathrm{CO})$. MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=215\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}): \delta=1.14(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}), $2.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=2.16$ Hz , pyrazolyl H-4), 8.46 (d, 1H, $J=2.16 \mathrm{~Hz}$, pyrazolyl H-5), 8.84 (s, 1H, quinazolinyl H-5).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ (215.25): C, $66.95 ; \mathrm{H}, 6.09 ; \mathrm{N}$, 19.52. Found C, 66.161; H, 6.029; N, 19.46.

General Procedure for the Preparation of Compounds 23-24a,b.
A mixture of aminocoumarine $22(1.61 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathbf{2 a}, \mathbf{b}$ $(1.67 \mathrm{~g}, 10 \mathrm{mmol})$ was refluxed in acetic acid for 1 h . The solution was allowed to cool and the solid obtained was crystallized in ethanol/dioxane.

2-[(Coumarin-3-ylamino)-methylene]cyclohexane-1,3-dione 2324a.

Compounds 23,24a were obtained as yellow crystals in 35% yield (1.03 g); $\mathrm{mp}=202^{\circ}$; ir: $2968(\mathrm{NH}), 1725$ and $1666 \mathrm{~cm}^{-1}$ (CO). MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=283$ [M+]. ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta=$ 1.90-1.96 (m, 2H, CH2 $), 2.48\left(\mathrm{t}, 4 \mathrm{H}, J=6.4 \mathrm{~Hz}, 2 \mathrm{CH}_{2}\right), 7.41(\mathrm{t}$, $1 \mathrm{H}, J=7.68 \mathrm{~Hz}$, coumarinyl H-6), $7.47(\mathrm{~d}, 1 \mathrm{H}, J=7.68 \mathrm{~Hz}$, coumarinyl H-8), $7.58(\mathrm{t}, 1 \mathrm{H}, J=7.68 \mathrm{~Hz}$, coumarinyl H-7), $7.73(\mathrm{~d}, 1 \mathrm{H}, J=7.80 \mathrm{~Hz}$, coumarinyl H-5), $8.42(\mathrm{~s}, 1 \mathrm{H}$,
coumarinyl H-4), $8.60(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}$, methylene-H), 12.64 (br s, 1H, NH).
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}$ (283.27): C, 67.84; H, 4.63; N, 4.95. Found C, 67.23; H, 4.6; N, 5.057.

5,5-Dimethyl-2-[(coumarin-3-ylamino)-methylene]cyclohexane-1,3-dione (24b).

Compound 24b was obtained as yellow crystals in 75% yield (2.33 g); $\mathrm{mp}=256^{\circ}$; ir $2954(\mathrm{NH}), 1708$ and $1668 \mathrm{~cm}^{-1}$ (CO). MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=311\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}): ~ \delta=1.01$ ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}$), $2.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.41$ (t, $1 \mathrm{H}, J=7.68 \mathrm{~Hz}$, coumarinyl H-6), $7.46(\mathrm{~d}, 1 \mathrm{H}, J=7.68 \mathrm{~Hz}$, coumarinyl H-8), $7.58(\mathrm{t}, 1 \mathrm{H}, J=7.68 \mathrm{~Hz}$, coumarinyl H-7), $7.73(\mathrm{~d}, 1 \mathrm{H}, J=7.80 \mathrm{~Hz}$, coumarinyl H-5), $8.40(\mathrm{~s}, 1 \mathrm{H}$, coumarinyl H-4), $8.60(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}$, methylene-H), 12.00 (br s, 1H, NH).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}$ (311.32): C, $69.44 ; \mathrm{H}, 5.50 ; \mathrm{N}$, 4.50. Found C, $69.50 ; \mathrm{H}, 5.35 ; \mathrm{N}, 4.64$.

General Procedure for the Preparation of Compounds 25 a,b.
A mixture of aminocoumarine $22(1.61 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathbf{4 a}, \mathbf{b}$ (10 mmol) was refluxed in pyridine for 4 hrs . The solution was allowed to cool and the solid obtained was crystallized in ethanol/dioxane.

3-(3-Oxo-3-phenylpropenylamino)coumarine (25a).

Compound 25a was obtained in 70% yield (2.03 g) as yellow crystals; $\mathrm{mp}=243^{\circ}$; ir: $2963(\mathrm{NH}), 1715$ and $1638 \mathrm{~cm}^{-1}(\mathrm{CO})$. MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=291\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}): \delta=6.40$ (d, $0.85 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-2$ in E form), $6.95(\mathrm{~d}, 0.15 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{H}-$ 2 in Z form), 7.34-7.87 (m, 9H, arom-H), 7.98 (s, 1 H , coumarinyl $\mathrm{H}-4), 8.02$ (d, $0.85 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-1$ in E form), 8.09 (d, 0.15 H , $J=16 \mathrm{~Hz}, \mathrm{H}-1$ in Z form), $11.95(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}, \mathrm{NH})$.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{3}$ (291.29): C, $74.21 ; \mathrm{H}, 4.5 ; \mathrm{N}$, 4.81. Found C, 74.13; H, 4.427; N, 4.861.

3-(3-Oxo-3-thien-2-yl-propenylamino)coumarine (25b).

Compound 25b was obtained in 30% yield (0.89 g) as yellow crystals; $\mathrm{mp}=254^{\circ}$; ir: $2967(\mathrm{NH}), 1712 \mathrm{~cm}^{-1}$ (CO). MS (EI, 70 $\mathrm{EV}): \mathrm{m} / \mathrm{z}=297\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}): \delta=6.30(\mathrm{~d}, 0.85 \mathrm{H}, \mathrm{J}=$ $8 \mathrm{~Hz}, \mathrm{H}-2$ in E form), 6.84 (d, $0.15 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{H}-2$ in Z form), 7.22-7.85 (m, 7 H , arom-H), 7.93 (s, 1 H , coumarinyl $\mathrm{H}-4$), 7.98 (d, $0.85 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-1$ in E form), $8.01(\mathrm{~d}, 0.15 \mathrm{H}, J=16 \mathrm{~Hz}$, $\mathrm{H}-1$ in Z form), $11.64(\mathrm{~d}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}, \mathrm{NH})$.
Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ (297.26): C, 64.64; H, 3.73; N, 4.71; S, 10.774. Found C, 64.67; H, 3.785; N, 4.835; S, 10.68.

2-[(4-Nitrophenyl)-hydrazono]-3-oxo-3-(coumarin-3-yl)-propionaldehyde (27).

Compound $\mathbf{3}(10 \mathrm{mmol})$ was dissolved in ethanol $(20 \mathrm{ml})$ and treated with sodium acetate ($1.23 \mathrm{~g}, 15 \mathrm{mmol}$), then gradually treated under stirring with a solution of p-nitrobenzenediazonium chloride prepared from p-nitroaniline and $(10 \mathrm{mmol})$ and the appropriate quantities of both hydrochloric acid and sodium nitrite. The solid product, so formed, was collected by filtration and crystallized from ethanol/dioxane. Compound 27 was obtained in 45% yield (1.65 g) as red crystals; $\mathrm{mp}=209^{\circ}$; ir: $3086(\mathrm{NH}), 1724$ and $1685 \mathrm{~cm}^{-1}(\mathrm{CO})$. MS (EI, 70 EV): m/z = $365\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}): \delta=7.45-7.48(\mathrm{~m}, 2(1 / 3) \mathrm{H}$, coumarinyl-H), 7.55-7.60 (m, $2(2 / 3) \mathrm{H}$, coumarinyl-H), 7.66$7.67(\mathrm{~m}, 2(1 / 3) \mathrm{H}$, coumarinyl-H), 7.67-7.80 (m, $2(2 / 3) \mathrm{H}$,
coumarinyl-H), 7.81 (d, $2(1 / 3) \mathrm{H}, J=6.7 \mathrm{~Hz}$, p-nitrophenyl-H), $8.01(\mathrm{~d}, 2(1 / 3) \mathrm{H}, J=9.2 \mathrm{~Hz}$, p-nitrophenyl-H), $8.24(\mathrm{~d}, 2$ $(2 / 3) \mathrm{H}, J=9.2 \mathrm{~Hz}$, p-nitrophenyl-H); $8.32(\mathrm{~d}, 2(2 / 3) \mathrm{H}, J=9.2$ Hz, p-nitrophenyl-H); 8.52 (s, 1 (1/3)H, coumarinyl H-4); 8.64 (s, $1(2 / 3) \mathrm{H}$, coumarinyl H-4), 9.52 (s, $1(2 / 3) \mathrm{H}, \mathrm{CHO}$), 10.01 (s , $1(1 / 3) \mathrm{H}, \mathrm{CHO}$), 12.92 (br s, $1(2 / 3) \mathrm{H}, \mathrm{NH}) ; 14.00$ (br s, $1(1 / 3) \mathrm{H}$, NH).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{6}$ (365.29): C, 59.18; H, 3.04; N , 11.5. Found C, $59.50 ; \mathrm{H}, 3.35 ; \mathrm{N}, 11.66$.

Amino-5,5-dimethyl-2-(phenylhydrazono)-cyclohex-3-enone (29).

Compound $5(10 \mathrm{mmol})$ was dissolved in ethanol $(20 \mathrm{ml})$ and treated with sodium acetate ($1.23 \mathrm{~g}, 15 \mathrm{mmol}$), then gradually treated under stirring with a solution of benzenediazonium chloride prepared from aniline and (10 mmol) and the appropriate quantities of both hydrochloric acid and sodium nitrite. The solid product, so formed, was collected by filtration and crystallized from ethanol. Compound 29 was obtained in 80% yield (1.94 g); $\mathrm{mp}=226^{\circ}$; ir: 3151 and $3026\left(\mathrm{NH}_{2}\right), 2953(\mathrm{NH}), 1620 \mathrm{~cm}^{-1}$ (CO). MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=243$ [M ${ }^{+}$]. ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta=$ $1.04\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.29-$ $7.33(\mathrm{~m}, 1 \mathrm{H}$, arom-H), 7.43-7.47 (m, 2H, arom-H), $7.68(\mathrm{~m}, 2 \mathrm{H}$, arom-H), 8.95 (br s, $1 \mathrm{H}, \mathrm{NH}$), 11.42 (br s, $1 \mathrm{H}, \mathrm{NH}$).

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ (243.30): C, 69.11; H, 7.04; N, 17.27. Found C, 69.12; H, 6.97; N, 17.21.

3H-6,6-Dimethyldipyrazolo[5,1-c:5',1'-c']benzo[1,2-e:4,3-e']di-1,2,4-triazine (33).

Each of compound $\mathbf{2 b}$, $5(10 \mathrm{mmol})$ was dissolved in ethanol $(20 \mathrm{ml})$ and treated with sodium acetate $(1.23 \mathrm{~g}, 15 \mathrm{mmol})$, then gradually treated under stirring with a solution of pyrazolyldiazonium chloride (prepared from 3-aminopyrazol (10 mmol) and the appropriate quantities of both hydrochloric acid and sodium nitrite as has been described earlier ref.) The solid formed was collected by filtration and crystallized from ethanol/dioxane. Compound 33 was obtained in 80% yield (2.33 g); $\mathrm{mp}>350^{\circ}$; ir: $3207 \mathrm{~cm}^{-1}(\mathrm{NH})$. MS (EI, 70 EV): $\mathrm{m} / \mathrm{z}=292\left[\mathrm{M}^{+}\right] .{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO): $\delta=1.71\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 5.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.97(\mathrm{~d}, 1 \mathrm{H}$, $J=1.92 \mathrm{~Hz}$, pyrazolyl-H), $7.45(\mathrm{~d}, 1 \mathrm{H}, J=2.54 \mathrm{~Hz}$, pyrazolyl$\mathrm{H}), 7.72(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}$, pyrazolyl-H), $8.52(\mathrm{~d}, 1 \mathrm{H}, J=2.54$ Hz , pyrazolyl-H), $10.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{8}$ (292.30): C, 57.52; H, 4.14; N, 38.34. Found C, 57.40; H, 4.22; N, 37.76.

Acknowledgement.
The authors are grateful to University of Kuwait R. A. for financial support through project Sc 05-00. Analytical facilities provided by SAF are highly appreciated.

REFERENCES AND NOTES

[1] F. M. El-Taweel and M. H. Elnagdi, J. Heterocyclic Chem., 38, 981 (2001).
[2] S. M. Al-Mousawi, M. A. Mohammed and M. H. Elnagdi, J. HetrocyclicChem., 38, 989 (2001).
[3] B. Al-Saleh, N. Al-Awadi, H-Al-Kandari, M. M. Abdelkhalik and M. H. Elnagdi. J. Chem. Res. (s),16 (2000); ibid (M) 201 (2000).
[4] A. Al-Etaibi, N. Al-Awadi; F. Al-Omran, M. M. Abdelkhalik and M. H. Elnagdi. J. Chem. Res. (s), 4 (1999); ibid (M) 151 (1999).
[5] F. Al-Omran, N. Al-Awadi, M. M. Abdelkhalik, K. Kaul, A.
A. El-Khair and M. H. Elnagdi. J. Chem. Res. (s), 84 (1997); ibid (M) 308 (1997).
[6] F. Al-Omran, M. M. Abdelkhalik, A. A. El- Khair and M. H. Elnagdi Synthesis, 91 (1997).
[7] B. Al-Saleh, M. M. Abdelkhalik, A. Eltokhy and M. H. Elnagdi. J. Heterocyclic Chem.,39, 1035(2002).
[8] B. Al-Saleh, M. M. Abdelkhalik, M. A. El-Apasery and M. H. Elnagdi J. Heterocyclic Chem.,40, 171,(2003).
[9] M. M. Abdelkhalik, S. M. Agamy and M. H. Elnagdi, Z. Naturforsch, 55, 1211 (2000).
[10] K. M. Al- Zaydi, E. A. Hafez and M. H. Elnagdi. J. Chem. Res. (s), 154 (2000); ibid (M) 510 (2000).
[11] A. Al-Enzy, B. Al-Saleh and M. H. Elnagdi, J. Chem. Res. (s),

4 (1997); ibid (M) 110 (1997).
[12] S. Al-Moussawi, K. Kaul, M. A. Mohammed and M. H.
Elnagdi, J. Chem. Res. (s),318 (1997); ibid (M) 2026 (1997).
[13] B. Al-Saleh, M. M. Abdelkhalik, A. Al-Enzy, and M. H.
Elnagdi, J. Chem. Res. (s),648 (1999); ibid (M) 2801 (1999).
[14] B. Al-Saleh, N Al-Awadi, H. Alkandari, M. M. Abdelkhalik
and M. H. Elnagdi, J. Chem. Res. (s), 16 (1997); ibid (M) 201 (2000).
[15] M. M. Abdelkhalik, S. M. Agamya and M. H. Elnagdi Synthesis,861 (2001).
[16] F. Al-Omran, M. M. Abdelkhalik, A. Abou- Elkhair and M. H. Elnagdi. Synthesis,91 (1997).
[17] N. Al-Awadi, M. H. Elnagdi, Y. A. Ibrahim, K. Kaul and A. Kumar, Tetrahedron, 57, 1609, (2001).

[^0]: All melting points are uncorrected. IR spectra were recorded in KBr disks using a Shimadzu IR-740 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Ac-80 spectrometer with [${ }^{2} \mathrm{H}_{6}$]DMSO as solvent (unless stated otherwise) and TMS as internal standard; chemical shifts are reported in δ units (ppm). Mass spectra were measured on Gs/MS INCOS XL Finnigan MAT. Microanalyses were performed on LECO CHNS-932.

